New Proposal

Date Submitted: 11/17/23 1:34 pm

viewing: : Agricultural \& Biological Engineering: Bioprocess Engineering and Industrial Biotechnology, BS

Last edit: 03/28/24 9:02 am
Changes proposed by: Kent Rausch

In Workflow

1. U Program Review
2. 1227 Head
3. 1741 Committee Chair
4. 1741 Head
5. KL Committee Chair
6. KL Dean
7. KP Committee

Chair
8. KP Dean
9. University Librarian
10. COTE Programs
11. Provost
12. Senate EPC
13. Senate
14. U Senate Conf
15. Board of Trustees
16. IBHE
17. HLC
18. DMI

Approval Path

1. 11/28/23 2:16 pm

Donna Butler
(dbutler):
Approved for U
Program Review
2. $12 / 12 / 2310: 40$
am
Ashley Hallock
(ahallock):
Approved for 1227
Head
3. $12 / 12 / 2311: 13$ am
Kent Rausch
(krausch):
Approved for 1741
Committee Chair
4. $12 / 12 / 238: 29 \mathrm{pm}$

Ronaldo
Maghirang
(ronaldom):
Approved for 1741
Head
5. 12/13/23 11:35
am
Brianna Gregg
(bjgray2):
Approved for KL
Committee Chair
6. 12/13/23 11:56
am
Anna Ball (aball):
Approved for KL Dean
7. 03/08/24 8:57 am

Ashley Hallock (ahallock):
Approved for KP Committee Chair
8. 03/08/24 8:59 am Michael Stoller (stoller4):
Approved for KP Dean
9. $03 / 18 / 2410: 23$
am
Claire Stewart (clairest):
Approved for University Librarian
10. 03/18/24 10:43
am
Suzanne Lee
(suzannel):
Approved for COTE Programs
11. 03/21/24 10:39
am
Brooke Newell
(bsnewell):
Approved for Provost

Administration Details

\(\left.\begin{array}{ll}Official Program \& Agricultural \& Biological Engineering: Bioprocess

Name \& Engineering and Industrial Biotechnology, BS\end{array}\right]\)| Diploma Title | Bachelor of Science in Agricultural and Biological Engineering | |
| :--- | :--- | :--- |
| Sponsor College | Grainger College of Engineering | |
| Sponsor | Engineering Administration | |
| Department | Ronaldo Maghirang, Kent Rausch | |
| Sponsor Name | ronaldom@illinois.edu, krausch@illinois.edu | |
| Sponsor Email | Ashley Hallock | College Contact |
| College Contact | | Email |

ahallock@illinois.edu
College Budget Tessa Hile
Officer
College Budget tmhile@illinois.edu
Officer Email
List the role for rollbacks (which role will edit the proposal on questions from EPC, e.g., Dept Head or Initiator) and/or any additional stakeholders. Purpose: List here who will do the editing work if proposal needs rolled back. And any other stakeholders.

Ashley Hallock, ahallock@illinois.edu; Ronaldo Maghirang, ronaldom@illinois.edu (ABE head); Kent Rausch, krausch@illinois.edu (ABE C\&C)

Does this program have inter-departmental administration?
Yes
Interdisciplinary Colleges and Departments (list other colleges/departments which are involved other than the sponsor chose above)
Please describe the oversight/governance for this program, e.g., traditional departmental/college governance. Inclusion of/roles of elected faculty committees? Inclusion of/roles of any advisory committees.

Agricultural \& Biological Engineering (ABE) programs are governed through a Courses and Curricula committee consisting of ABE faculty and ex officio officers. ABE students graduate through the Grainger College of Engineering. Curricula changes are reviewed by the Grainger College of Engineering as well as the College of ACES. As an engineering curriculum, the ABE degree programs are reviewed and accredited by the Accreditation Board for Engineering and Technology (ABET).

College Agr, Consumer \& Env Sciences
Department Agricultural \& Biological Engr
Is there an additional department involved in governance?

Proposal Title

Effective Catalog Fall 2024
Term
Proposal Title (either Establish/Revise/Eliminate the Degree Name in Program Name in the College of XXXX, i.e., Establish the Bachelor of Science in Entomology in the College of Liberals Art and Sciences, include the Graduate College for Grad Programs)

Establish a Concentration in Bioprocess Engineering and Industrial Biotechnology in the Bachelor of Science in Agricultural and Biological Engineering in the Grainger College of Engineering

Does this proposal have any related proposals that will also be revised during the next 6 weeks? Consider Majors, Minors, Concentrations \& Joint Programs in your department. Please know that this information is used administratively to move related proposals through workflow efficiently. Example: If you are revising the BS proposal and one related concentration within the next 6 weeks, "This BS proposal (key 567) is related to the Concentration A proposal (key 145)."

As part of the revision to the ABE BS (key 507) six concentrations are proposed, replacing the two existing concentrations (Agricultural, Biological).

1. Off-Highway Vehicle and Equipment Engineering, key 1174
2. Soil and Water Resources Engineering, key 1175
3. Bioprocess Engineering and Industrial Biotechnology, key 1176
4. Sustainable Ecological and Environmental Systems Engineering, key 1177
5. Renewable Energy Systems Engineering, key 1178
6. Synthetic Biological Engineering, key 1179

The 10KL5163BSAG: Agricultural \& Biological Engineering, BSAG program is not changed (key 72), with only minor updates. The Agricultural Engineering and Biological
Engineering concentrations within the ABE BS (keys 732 and 733, respectively) are being phased down.

Program Justification

Provide a brief justification of the program, including highlights of the program objectives, and the careers, occupations, or further educational opportunities for which the program will prepare graduates, when appropriate.

Revisions to the Agricultural and Biological Engineering (ABE) major will provide more cohesive progression of introductory fundamental ABE courses during years 1 and 2, followed by distinctive concentrations in focused career fields. The concentrations will communicate to potential students and employers the capabilities of students graduating from the ABE major with one of the concentrations.

The revised ABE BS base will refine the curriculum to include a four semester common core, followed by four semesters within a student's chosen concentration. Each concentration has 30 credit hours required.

The Bioprocess Engineering and Industrial Biotechnology (BEIB) concentration defines a unique area of expertise within the $A B E$ discipline, providing training to students in fundamental areas of engineering and applying them to complex biological and agricultural materials for the purpose of producing food, biofuels, biochemicals and other bioproducts from biological materials. The concentration has a foundation of 21 hr required courses (14 hr Engineering) plus 3 hr course work related to bioprocessing or microbiology and 6 hr microbiology or process technology.

The BEIB concentration meets the minimum of 40 hr upper-division classes for the IBHE requirement by:

- A total of 57 hours upper-division for the degree
- 300 \& 400 level classes
o 23 hours concentration courses
- ABE 341 (3 hours)
- ABE 425 (4 hours)
- ABE 483 (3 hours)
- ABE 488 (4 hours)
- Select 3 hours list (3 hours)
- Select 6 hours (6 hours)
- 12 hours from the ABE BS Core
- ABE 340 (3 hours)
- ABE 430 (2 hours)
- ABE 469 (4 hours)
- IE 300 or STAT 400 (3 hours)
- 22 hours 200 level coursework with 2 or more prerequisites
o ECE 205 (3 hours) - prerequisites of PHYS 212 and MATH 241 and PHYS 211
o CHEM 232 (4 hours) - prerequisites of CHEM 104 and 105
o PHYS 211 (4 hours) - prerequisites of MATH 231 and MATH 220 or 221
o PHYS 212 (4 hours) - prerequisites of MATH 241 and PHYS 211
o MATH 241 (4 hours) - prerequisites of MATH 231 and MATH 220 or 221
o TAM 211 (3 hours) - prerequisites of PHYS 211, MATH 241 or 257

Instructional Resources

Will there be any reduction in other course offerings, programs or concentrations by your department as a
result of this new program/proposed change?

No
Does this new program/proposed change result in the replacement of another program?

No
Does the program include other courses/subjects outside of the sponsoring department impacted by the creation/revision of this program?

Yes
Courses outside
of the sponsoring
department/interdisciplinary
departments
CHEM 232 - Elementary Organic Chemistry I
CHBE 471 - Biochemical Engineering
CHBE 478 - Bioenergy Technology
MCB 100 - Introductory Microbiology
FSHN 471 - Food \& Industrial Microbiology
FSHN 481 - Food Processing Unit Ops I
FSHN 482 - Food Processing Unit Ops I Lab
FSHN 414 - Food Chemistry
FSHN 472 - Applied Food Microbiology
FSHN 483 - Food Processing Unit Ops II
FSHN 484 - Food Processing UnitOps II Lab
Please attach any FSHN.pdf
letters of CHBE.pdf
support/acknowledgenternlt letter.pdf
for any MCB letter.pdf
Instructional
Resources
consider faculty, students, and/or
other impacted
units as
appropriate.

Program Regulation and Assessment

Plan to Assess and Improve Student Learning

Illinois Administrative Code: 1050.30(b)(1)(D) Provision is made for guidance and counseling of students, evaluations of student performance, continuous monitoring of progress of students toward their degree objectives and appropriate academic record keeping.

List the program's student learning outcomes. Each outcome should identify what students are expected to know and/or be able to do upon completing this program.

Student outcomes for the program are:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
3. an ability to communicate effectively with a range of audiences.
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Describe how, when, and where these learning outcomes will be assessed.

The process of periodical reviews is a continuous improvement process. The ABE Course and Curriculum Committee and the ABE Faculty Advisory Committee work with the department administration to maintain and revise the program educational objectives. The ABE Outcomes and Assessment Committee manages the processes of the development, collection and summarization of the program education objectives review data collection.

Student senior exit interviews are conducted by the Head. A written senior exit survey questionnaire is provided to each graduating senior at the end of the last semester of enrollment. All graduating seniors are asked to participate in a focus group to discuss the nature of their undergraduate experience. Participation in the senior exit interviews and the completion of the written senior exit questionnaire are voluntary. The information provided by the senior exit interview and questionnaires are compiled by the ABE Undergraduate Program Coordinator. The summary information is provided to the ABE Administration, the ABE Faculty Advisory Committee and the ABE Course and Curriculum Committee. The information is used to review the program educational objectives.

Alumni surveys also are used. ABE alumni are surveyed after graduation at 2, 5 and 10 year intervals post-graduation. A survey form is sent to each available alumnus via electronic media. Completed forms are compiled in a summary format. The information is available to the ABE faculty, administration and Courses and Curriculum Committee for reviewing the objectives.

Feedback from employers is provided by the ABE External Advisory Committee and companies representatives that work with the senior design team projects. The ABE External Advisory Committee meets on an annual basis with ABE administration, students, faculty and staff. The Committee provides feedback relative to PEOs as part of a committee report. This report is provided to faculty, administration and staff as a written report and a discussion presentation. Companies sponsor the ABE senior industry linked design projects, and representatives from these companies provide feedback to students and faculty about students' preparedness upon completion of the projects. This information is considered very useful in assessing and reviewing the program educational objectives.

Alumni surveys also are used to assess involvement of ABE graduates in the ABE profession. Participation in professional meetings and conferences is not formally assessed, but efforts are made on behalf of the ABE department to connect with graduates in professional activities through departmental sponsored receptions at annual ASBAE International Meetings, local ASABE section meetings, the Grainger College of Engineering annual open house, College of ACES annual ExplorACES open house, an annual ABE@Illinois on-campus event for all alumni and annual homecoming activities in conjunction with university events. These activities are not formally assessed, but they are discussed by the ABE department relative to our program quality and program educational objectives.

Identify faculty expectations for students' achievement of each of the stated student learning outcomes. What score, rating, or level of expertise will signify that students have met each outcome? Provide rating rubrics as necessary.

This concentration is subject to the ABET accreditation process which assesses each learning outcome as well as the entire ABE BS program.

Explain the process that will be implemented to ensure that assessment results are used to improve student learning.

The BEIB concentration will be assessed as a part of the overall ABE BS program according to standards and methods used by the Engineering Accreditation Commission of ABET, Inc. (abet.org). This accreditation process uses data collected during BS degree completion and post graduation to determine the extent that student learning outcomes were achieved and where improvement may be needed. Student assignments, exit interviews and feedback from alumni and employers are used for improving the program. The ABE Courses and Curriculum Committee and other select faculty preparing for ABET review will collect feedback regarding the BEIB concentration and ensure that courses map to the student outcomes and meet learning outcomes. Areas in need of improvement will be identified and recommendations for improvement will be specified that can be implemented in future years. The systematic assessment of student outcomes will be used to track progress and improvement goals.

Program

Description and
Requirements
Attach Documents
Is the career/profession for graduates of this program regulated by the State of Illinois?

Program of Study

Baccalaureate degree requires at least 120 semester credit hours or 180 quarter credit hours and at least 40 semester credit hours (60 quarter credit hours) in upper division courses" (source: https://www.ibhe.org/assets/files/PublicAdminRules2017.pdf). For proposals for new bachelor's degrees, if this minimum is not explicitly met by specifically-required 300-and/or 400-level courses, please provide information on how the upper-division hours requirement will be satisfied.

Attach Program of	ABE curriculum revisions side by side
Study-related information such	$\underline{\text { ABE Curriculum } 2023 \text { Sample Sequences }}$
as sample sequences (for undergraduate	$\underline{20231117 . x I s x}$
programs) or	
college-level	
forms.	
Catalog Page Text - Overview Tab	

Description of program for the catalog page. This is not official content, it is used to help build the new catalog page for the program. Can be edited in the catalog by the college or department.

Statement for
Programs of Study Catalog

Graduation Requirements

Minimum Overall GPA: 2.0
Minimum hours required for graduation: 128 hours, to include a minimum of 40 hours of upperdivision coursework generally at the 300- and 400- level. These hours can be drawn from all elements of the degree.
General education: Students must complete the Campus General Education requirements including the campus general education language requirement. One of the Social and Behavioral Sciences (SBS) courses must include one of the following economics courses: ECON 102, ACE 100, ACE 210, ACE 251, or ACE
255. ABE 469 will satisfy a technical core course and the Campus General Education Advanced Composition requirement.
Orientation and Professional Development

Course List

Code Title Hours

ABE 127 Introduction to Agricultural \& Biological Engineering 2
ENG 100Grainger Engineering Orientation Seminar (External transfer students take ENG 300.)1
Total Hours
Foundational Mathematics and Science
Course List
Code Title Hours

CHEM 102General Chemistry I 3
CHEM 103General Chemistry Lab I 1
CHEM 104General Chemistry II 3
CHEM 105General Chemistry Lab II 1
MATH 221 Calculus I (MATH 220 may be substituted. MATH 220 is appropriate for students with no 4 background in calculus. 4 of 5 credit hours count towards degree.)
MATH 231Calculus II
MATH 241Calculus III 4
MATH 257Linear Algebra with Computational Applications 3
MATH 285Intro Differential Equations 3
PHYS 211 University Physics: Mechanics 4
PHYS 212 University Physics: Elec \& Mag 4
Total Hours 33
Agricultural and Biological Engineering Technical Core

Course List

Code	Title	Hours
ABE 128	Applied Biology for Agricultural and Biological Engineers	3
ABE 227	Computer-Aided Problem-Solving for ABE I	3
ABE 228	Computer-Aided Problem-Solving for ABE II	3
ABE 340	Thermodynamics for Agricultural and Biological Engineering3	
ABE 430	Project Management	2
ABE 469	Capstone Design Experience	4
CS 101	Intro Computing: Engrg \& Sci	3
ECE 205	Electrical and Electronic Circuits	3

Code	Title	Hours
SE 101	Engineering Graphics \& Design	3
IE 300	Analysis of Data	3
or STAT	400Statistics and Probability I	
TAM 211	Statics	3
TAM 212	Introductory Dynamics	3
Total Hours	36	

Concentration Requirements: complete a minimum of $\mathbf{3 0}$ hours from courses below Course List

Code Title Hours

Total Minimum Concentration Hours30

Course List	Hours
Code	Title
Free Electives	10
Additional course work, subject to the Grainger College of Engineering restrictions to Free Electives,	
so that there are at least 128 credit hours earned toward the degree.	128

Corresponding Program(s)
Agricultural \& Biological Engineering, BS

Program Features

Academic Level Undergraduate
Is This a Teacher Certification Program?
No
Will specialized accreditation be sought for this program?

No
Additional concentration notes (e.g., estimated enrollment, advising plans, etc.)

Delivery Method

This program is available:
On Campus - Students are required to be on campus, they may take some online courses.

Number of Students in Program (estimate)
Year One Estimate 10
5th Year Estimate (or when
40 fully implemented)

Budget

Will the program or revision require staffing (faculty, advisors, etc.)
beyond what is currently available?
No
Additional Budget
Information

Attach File(s)

Financial Resources

How does the unit intend to financially support this proposal?
This concentration requires no additional financial resources as it will build upon current courses offered. No additional faculty will be needed to support the concentration as proposed.

Will the unit need to seek campus or other external resources?

Attach letters of support

Faculty Resources

Please address the impact on faculty resources including any changes in numbers of faculty, class size, teaching loads, student-faculty ratios, etc.

No major changes are anticipated in class sizes, although enrollments in some required courses may increase slightly.

Library Resources

Describe your proposal's impact on the University Library's resources, collections, and services. If necessary please consult with the appropriate disciplinary specialist within the University Library.

Courses specified in the proposed Concentration already exist. Therefore, new or increased Library resources will not be needed. Existing Library collections, resources and services are sufficient to support this program.

HLC Section

Credit Hours

Existing or repackaged curricula	Number of Credit	117
(Courses from existing inventory of	Hours:	Percent of Total:
Revised or redesigned curricula (Courses	Number of Credit	11
for which content has been revised for	Hours:	Percent of Total:
the new program):	9	
New curricula (Courses developed for	Number of Credit	0
the new program that have never been	Hours:	Percent of Total:
offered):	0	
Total Credit Hours of the Program:	Number of Credit	128
	Hours:	Percent of Total:
100		
New Faculty Required		
Will new faculty expertise or new faculty m	embers be needed	launch this program
No		
Please explain		
existing coverage:		
Courses taught for this Concentration ar	already being offer	y existing faculty

courses listed in the Concentration have room for modest increases in enrollment.

Additional Funds

Will the proposed program require a large outlay of additional funds by the institution?

No

Institutional Funding

Please explain institutional funding for proposed program:

No additional institutional funding will be needed.

EP Documentation

EP Control
EP.24.101
Number
Attach
Rollback/Approval
Notices
This proposal
No
requires HLC
inquiry

DMI Documentation

Attach Final
Approval Notices
Banner/Codebook
Name
Program Code:

Minor Conc
Code

Degree
Code

Major
Code

Senate Approval
Date
Senate
Conference
Approval Date
BOT Approval
Date
IBHE Approval
Date
HLC Approval
Date

DOE Approval
Date
Effective Date:
Attached
Document
Justification for this request

Program Reviewer Brooke Newell (bsnewell) (03/10/23 11:31 am): Rollback: Email sent to Kent, Comments

Ashley, Mike, and Ronaldo

Brooke Newell (bsnewell) (04/24/23 9:25 am): Rollback: Revisions requested for Administration Details, Program Justification, POS table, and Corresponding Programs.
Detailed email sent to Ronaldo, Kent, Ashley, and Brianna
Brooke Newell (bsnewell) (09/11/23 12:30 pm): Rollback: Email sent to Kent, Ashley and Ronaldo
Brooke Newell (bsnewell) (11/01/23 3:11 pm): Rollback: Email sent to Kent, Ashley, Brianna, and Ronaldo

From:	Engeseth, Nicki
To:	Crump, Heather Michelle
Subject:	RE: ABE - New Concentrations
Date:	Tuesday, April 11, 2023 1:29:06 PM
Attachments:	image001.png

Hi Kent and Heather,
Thank you for reaching out on this - it is complicated - which for now should be mostly ok. The courses FSHN 414, 471 are fine - we typically accept ABE students anyway. FSHN 472 is also ok - for now - but if our enrollment increases then we would have issues. Of course the students would be expected to have the prerequisites for these courses.

The courses $481-484$ are a bit more tricky. We have the lecture $(481,483)$ fairly open at the moment and are making plans to accommodate more students in the laboratory ($482 \& 484$). It is not a requirement that students take the entire sequence - lecture only is fine too...

So, I think this will be ok.
Thanks,
Nicki

Nicki J. Engeseth, Ph.D. । Professor and Head
Department of Food Science \& Human Nutrition । University of Illinois
260 A Bevier Hall, 905 S. Goodwin, Urbana, IL 61801
Phone: (217)244-6788

From: Crump, Heather Michelle hcrump@illinois.edu
Sent: Monday, April 3, 2023 3:19 PM
To: Engeseth, Nicki engeseth@illinois.edu
Subject: ABE - New Concentrations

Dear Dr. Engeseth,
The Agricultural and Biological Engineering (ABE) department is revising its BS program and creating six new concentrations:

BEIB	Bioprocess Engineering and Industrial Biotechnology
OHVEE	Off-Highway Vehicle and Equipment Engineering
RESE	Renewable Energy Systems Engineering
SWRE	Soil and Water Resources Engineering
SEESE	Sustainable Ecosystems and Environmental Systems Engineering
SBE	Synthetic Biological Engineering

As part of one or more of these concentrations, we are proposing to specify one or more of your
courses as part of the Program of Study. We anticipate about 10-15 students in the ABE BS program to take these courses each year. In some cases, our ABE students have been enrolling in your courses as part of a more general program of study. For your department, the courses listed are:

FSHN 414	Food Chemistry	BEIB
FSHN 471	Food \& Industrial Microbiology	BEIB
FSHN 472	Applied Food Microbiology	BEIB
FSHN 481	Food Processing Unit Operations I	BEIB
FSHN 482	Food Processing Unit Operations I	BEIB
FSHN 483	Food Processing Unit Operations I	BEIB
FSHN 484	Food Processing Unit Operations I	BEIB

Please let me know if you have any questions. Thank you.

Dr. Kent Rausch
Chair, ABE Courses and Curriculum committee

HEATHER CRUMP

Administrative Aide
Schedule for Fall 2022: Office (332K) - Monday, Tuesday, Wednesday; Remote - Thursday, Friday Department of Agricultural and Biological Engineering
College of Agricultural, Consumer and Environmental Sciences Administration
University of Illinois at Urbana-Champaign
Agricultural \& Biological Engineering
332K AESB | M/C 644
Urbana, IL 61801
217.333.2446 | hcrump@illinois.edu
abe.illinois.edu

Celebrating $\mathbf{1 0 0}$ years of excellence, innovation, and engagement

Under the Illinois Freedom of Information Act any written communication to or from university employees regarding university business is a public record and may be subject to public disclosure.

From:	Rao, Christopher V
To:	Crump, Heather Michelle
Subject:	Re: ABE - New Concentrations
Date:	Monday, April 3, 2023 3:06:05 PM
Attachments:	image001.png

That's fine. None of these classes are overenrolled.

Chris

From: Crump, Heather Michelle hcrump@illinois.edu
Date: Monday, April 3, 2023 at 3:01 PM
To: Rao, Christopher V cvrao@illinois.edu
Subject: ABE - New Concentrations
Dear Dr. Rao,
The Agricultural and Biological Engineering (ABE) department is revising its BS program and creating six new concentrations:

BEIB	Bioprocess Engineering and Industrial Biotechnology
OHVEE	Off-Highway Vehicle and Equipment Engineering
RESE	Renewable Energy Systems Engineering
SWRE	Soil and Water Resources Engineering
SEESE	Sustainable Ecosystems and Environmental Systems Engineering
SBE	Synthetic Biological Engineering

As part of one or more of these concentrations, we are proposing to specify one or more of your courses as part of the Program of Study. We anticipate about 10-15 students in the ABE BS program to take these courses each year. In some cases, our ABE students have been enrolling in your courses as part of a more general program of study. For your department, the courses listed are:

CHBE 458 Synthetic Nanomaterials SBE
CHBE 471 Biochemical Engineering BEIB
CHBE 472 Techniques in Biomolecular Eng SBE
CHBE 473 Biomolecular Engineering SBE
CHBE 474 Metabolic Engineering SBE
CHBE 478 Bioenergy Technology BEIB
CHBE 478 Bioenergy Technology RESE
Please let me know if you have any questions. Thank you.
Dr. Kent Rausch
Chair, ABE Courses and Curriculum committee

Department of Agricultural and Biological Engineering
College of Agricultural, Consumer and Environmental Sciences Administration
University of Illinois at Urbana-Champaign
Agricultural \& Biological Engineering
332K AESB | M/C 644
Urbana, IL 61801
217.333.2446 | hcrump@illinois.edu
abe.illinois.edu

Celebrating 100 years of excellence, innovation, and engagement

Under the Illinois Freedom of Information Act any written communication to or from university employees regarding university business is a public record and may be subject to public disclosure.

Professor Kent Rausch
Chair, Department of Agricultural and Biological Engineering Courses and Curriculum Committee

Dear Professor Rausch,
The Department of Chemistry (CHEM) is supportive of the proposed new concentrations in your B.S. program. CHEM is happy to provide access to the following:

- CHEM 232: Elementary Organic Chemistry I as a science requirement, with the possible addition of 10-15 students per cohort.

In the event that the numbers grow far larger than this, we may ask your Department to sponsor a discussion section, as other units do (discussion sections usually have one teaching assistant per 24 students).

Congratulations on your exciting proposed program. If you need more information, please contact me at 333-7680 or at murphycj@illinois.edu.

Best Regards,

Catherine J. Murphy
Head, Department of Chemistry
Larry R. Faulkner Endowed Chair in Chemistry

20 April 2023
Kent Rausch, PhD
Chair, ABE Courses and Curriculum Committee
Department of Agricultural and Biological Engineering krausch@illinois.edu

Dear Professor Rausch,

Thank you for your message regarding your proposed modifications to your BS degree program. The School of Molecular and Cellular Biology, is supportive of your proposal and agrees to allow 10-15 students per academic year to be enrolled in the following courses (followed by the specific concentration associated with the course):

MCB 100 Introductory Microbiology; BEIB
MCB 100 Introductory Microbiology; SBE
MCB 150 Molecular \& Cellular Basis of Life; SBE
MCB 250 Molecular Genetics; SBE
MCB 252 Cells, Tissues \& Development; SBE
MCB 424 Microbial Biochemistry; SBE
MCB 450 Introductory Biochemistry; SBE

We are not able to promise these seats in a particular semester. Each course listed above, save MCB 424, is offered in both Spring and Fall semesters. Best of luck with your new concentrations!

All the best,

Melissa Michael
Associate Director for Curriculum \& Instruction
mmichae@illinois.edu
217-244-6238

CC: Milan Bagchi, Director, School of Molecular and Cellular Biology

Fall 2022 Program of Study

Graduation Requirements
Minimum Overall GPA: $\mathbf{2 . 0}$

Minimum hours required for graduation: 128 hours
General education: Students must complete the Campus General Education requirements including the campus general education language requirement. One of the SBS courses must be an introductory economics course (ECON 102 or ECON 103 or ACE 100). ABE 469 will satisfy a technical core course and the Campus General Education Advanced Composition requirement.

Orientation and Professional Development		
Code	Title	Hours
	Intro Agric \& Biological Engrg	1
ENG 100	Engineering Orientation (External transfer students take ENG 300)	1
	Total Hours:	2

Foundational Mathematics and Science		
Code	Title	Hours
CHEM 102	General Chemistry I	3
CHEM 103	General Chemistry Lab I	1
CHEM 104	General Chemistry II	3
CHEM 105	General Chemistry Lab II	1
MATH 221	Calculus I	4
MATH 231	Calculus II	3
MATH 241	Calculus III	4
MATH 257	Linear Algebra with Computational Applications	3
MATH 285	Intro Differential Equations	3
PHYS 211	University Physics: Mechanics	4
PHYS 212	University Physics: Elec \& Mag	4
	Total Hours:	33

Agricultural and Biological Engineering Technical Core Code \quad Title For Both Concentrations: Hours ABE Principles: Biological 2 ABE Principles: Machine Syst 2 ABE Principles: Soil \& Water ABE Principles: Bioenvironment ABE Principles: Bioprocessing	

ABE 430	Project Management		2
ABE 469	Industry-Linked Design Project		4
CS 101	Intro Computing: Engrg \& Sci		3
ECE 205	Electrical and Electronic Circuits		3
SE 101	Engineering Graphics \& Design		3
TAM 211	Statics		3
TAM 212	Introductory Dynamics		3
		Total Hours:	31

Concentration

Free Electives		
Code	Title	Hours

Proposed Program of Study

Graduation Requirements

Minimum Overall GPA: 2.0
Minimum hours required for graduation: 128 hours

	Hours
General education: Students must complete the Campus General	12
Education requirements including the campus general education	
language requirement. One of the SBS courses must be an introductory	
economics course (ECON 102, ACE 100, ACE 210, ACE 251 or, ACE 255).	
ABE 469 will satisfy a technical core course and the Campus General	
Education Advanced Composition requirement.	

Minimum of $\mathbf{4 0}$ hours of advanced credit (300 and $\mathbf{4 0 0}$ level) required

Orientation and Professional Development		
Code	Title	Hours
ABE 127	Intro Agric \& Biological Engrg	2
ENG 100	Engineering Orientation (External transfer students take ENG 300)	1
	Total Hours:	3

Foundational Mathematics and Science		
Code	Title	Hours
CHEM 102	General Chemistry I	3
CHEM 103	General Chemistry Lab I	1
CHEM 104	General Chemistry II	3
CHEM 105	General Chemistry Lab II	1
MATH 221	Calculus I	4
MATH 231	Calculus II	3
MATH 241	Calculus III	4
MATH 257	Linear Algebra with Computational Applications	3
MATH 285	Intro Differential Equations	3
PHYS 211	University Physics: Mechanics	4
PHYS 212	University Physics: Elec \& Mag	4

| Free Electives
 Code Title Hours $\mathbf{}$ |
| :--- | :--- | :--- |

| Additional course work, subject to the Grainger College of Engineering
 restrictions to Free Electives, so that there are at least 128 credit hours
 earned toward the degree. | $11-12$ |
| :--- | :--- | :--- | :--- |
| Total Hours of Curriculum to Graduate | Additional course work, subject to the Grainger College of Engineering
 restrictions to Free Electives, so that there are at least 128 credit hours
 earned toward the degree. |

Bioprocess Engineering and Industrial Biotech

Course List

Code	Title	Hours
		Total Required:
	$\mathbf{3 0}$	
Required courses	$\mathbf{2 1}$	
ABE 341	Transport Processes in ABE	3
ABE 425	Eng Measure Systems	4
ABE 483	Engineering Properties of Food Materials	3
ABE 488	Bioprocessing Biomass for Fuel	4
CHEM 232	Organic Chemistry	4
MCB 100	Introductory Microbiology	3

Select 3 hours from the following:	3	
FSHN 471	Food and Industrial Microbiology	3
FSHN 481 \&	Food Processing Unit Operations I (2); Food Proc Unit Op I	3
482	Lab (1)	

Select 6 hours from the following:	$\mathbf{6}$	
FSHN 414	Food Chemistry	3
FSHN 472	Applied Food Microbiology	3
FSHN 483 \&	Food Processing Unit Operations II (2); Food Proc Unit Op II	3
484	Lab (1)	
CHBE 471	Biochemical Engineering	3
CHBE 478	Bioenergy Technology	3

Off-Highway Vehicle and Equipment Engineering

Course List

Code	Title	Hours
	Total Required:	30
Required courses		20
TAM 251	Introductory Solid Mechanics (or ME 330)	3
TAM 335	Introductory Fluid Mechanics	4
ABE 341	Transport Processes in ABE	3
ABE 361	Functional Analysis and Design of Agricultural Machine Syst	3
ABE 425	Eng Measure Systems	4
ABE 466	Engineering Off-Road Vehicles	3
Select one of the following:		3 to 4
ABE 426	Principles of Mobile Robotics	4
ABE 454	Soil Physics	3
MSE 280	Engineering Materials	3
Select one of the following sets:		7
NRES 201 (4) \&	Introductory Soils and Soil Fertility \& Fertilizers	7
NRES 488 (3)		
CPSC 112 (4) \&	Introduction to Crop Sciences and Crop Growth \&	7
CPSC 418 (3)	Management	

Renewable Energy Systems Engineering

Course List

Code
Title
Hours
Total Required: 30

Required courses:	$\mathbf{1 4}$	
ABE 341	Transport Processes in ABE	3
ABE 425	Eng Measure Systems	4
ABE 436	Renewable Energy Systems	3
ABE 488	Bioprocessing Biomass for Fuel	4

Select one of the following sets:		6 to 8
ATMS 201 (3) \&	General Physical Meteorology; Climate Processes	6
ATMS 307 (3)		
CPSC 112 (4) \&	Introduction to Crop Sciences; Bioenergy Crops	7
CPSC 415 (3)		
GEOL 107 (4) \&	Physical Geology; Environmental Geology	8
GEOL 380 (4)		

Select one of the following sets:
9 to 10
Wind Energy
TAM 251 Introductory Solid Mechanics (or ME 330) 3
CEE 300 Behavior of Materials 4
NPRE 475 Wind Power Systems 3
Solar Energy
TAM 251 Introductory Solid Mechanics (or ME 330) 3
MSE 280 Engineering Materials 3
ECE 333 Green Electric Energy 3

Biofuels		3
CHEM 232	Organic Chemistry I	3
CHBE 478	Bioenergy Technology	4
TAM 335	Introductory Fluid Mechanics	

Soil and Water Resources Engineering

Course List

Code	Title	Hours
	Total Required:	30
Required courses		10
TAM 335	Introductory Fluid Mechanics	4
ABE 454	Environmental Soil Physics	3
ABE 456	Land \& Water Resources Engineering	3
Select one from the following:		4
ABE 425	Eng Measure Systems	4
CEE 458	Water Resources Field Methods	4
Select one of the following:		3
ABE 458	NPS Pollution Modeling, Data Management and Analysis	2
ABE 459	Drainage and Water Management	3
Select one of the following sets:		7
CPSC 112 (4) Introduction to Crop Sciences and Principles of		7
\& 437 (3) Agroecology		
NRES 201 (4) Introductory Soils and Environmental Microbiology or Soil		7
\& 475 (3) or Fertility \& Fertilizers		
488 (3)		
Select six hours from the following:		6
ABE 450	International Water Project I	3
ABE 452	Engineering for Disaster Resilience	3
ABE 457	NPS Pollution Processes	2
ABE 458	NPS Pollution Modeling, Data Management and Analysis	3
ABE 459	Drainage and Water Management	3
CEE 330	Environmental Engineering	3
CEE 350	Water Resources Engineering	3
CEE 380	Geotechnical Engineering	3

Sustainable Ecological and Environmental Systems Engineering

Course List

Code	Title	Hours	
		Total Required:	30
Required courses:			18
ABE 341	Transport Processes in ABE		3
ABE 425	Eng Measure Systems		4
TAM 335	Introductory Fluid Mechanics		4
CEE 330	Environmental Engineering		3
IB 150	Organismal \& Evolutionary Biology		4

Select one of the following:	$\mathbf{3}$	
ABE 450 International Water Project I	3	
ABE 451	International Water Project II	3
ABE 452	Engineering for Disaster Resilience	3
ABE 456	Land \& Water Resources Engineering	3

Select one of the following:	$\mathbf{2}$ to $\mathbf{4}$	
ABE 436	Renewable Energy Systems	3
ABE 457	NPS Pollution Processes	2
ABE 458	NPS Pollution Modeling	3
ABE 459	Drainage \& Water Management	3
ABE 476	Indoor Air Quality Engineering	4
CEE 434	Environmental Systems I	3
CEE 440	Fate Cleanup Environ Pollutant	4

Select two from one of the following sets:

Ecological Systems	$\mathbf{6}$ to	
IB 452	Ecosystem Ecology	3

NRES 219 Applied Ecology 3
NRES 348 Fish \& Wildlife Ecology 3

NRES 362 Ecology of Invasive Species 3
NRES 418 Wetland Ecology \& Management 3
NRES 419 Env \& Plant Ecosystems 3
NRES 420 Restoration Ecology 3
NRES 429 Aquatic Ecosystem Conservation 3
NRES 439 Env \& Sustainable Development 3
NRES 485 Stream Ecosystem Management 4
OR
Horticultural Systems 6 to 7

HORT 100 Introduction to Horticulture 3

HORT 341	Green House Mgmt \& Production	4
HORT 435	Urban Food Production	3
OR		
Animal Systems		7 to 8
ANSC 100	Intro to Animal Sciences	4
ANSC 363	Behavior of Domestic Animals	4
IB 329	Animal Behavior	3

\square

Synthetic Biological Engineering

Course List

Code	Title	Hours	
		Total Required:	30
Required courses			18
CHEM 232	Organic Chemistry		4
ABE 341	Transport Processes in ABE		3
ABE 425	Eng Measure Systems		4
ABE 446	Biological Nanoengineering		3
MCB 150	Molecular \& Cellular Basis of Life		4

Select one course from the following:	3	
CHBE 458	Synthetic Nanomaterials	3
CHBE 472	Techniques in Biomolecular Engineering	3
CHBE 473	Biomolecular Engineering	3
CHBE 474	Metabolic Engineering	3
BIOE 430	Intro Synthetic Biology	3
MSE 470	Design \& Use of Biomaterials	3

Select 9 hours from the following (no more than 3 hr at the 100-200 level): 9
MCB 100 Introductory Microbiology 3
MCB 250 Molecular Genetics 3
MCB 252 Cells, Tissues, and Development 3
MCB 450 Introductory Biochemistry 3
MCB 424 Microbial Biochemistry 3
IB $150 \quad$ Organismal \& Evolutionary Biology 4
IB 204 Genetics 3
IB 432 Genes \& Behavior 3
IB 472 Plant Molecular Biology 1
IB 473 Plant Genomics 1
IB 103 Introduction to Plant Biology 4
CPSC 261 Biotechnology in Agriculture 3
CPSC 265 Genetic Engineering Lab 3
CPSC 352 Plant Genetics 4
CPSC 452 Advanced Plant Genetics 3
CPSC 466 Genomics for Plant Improvement 2
IB 420 Plant Physiology 3
IB 421 Photosynthesis 3
IB 411 Bioinspiration 3
IB 104 Animal Biology 4
ANSC 100 Intro to Animal Sciences 4
ANSC 221 Cell, Metabolism, and Genetics 3
ANSC 224 Animal Reproduction and Growth 4
ANSC 350 Cellular Metabolism in Animals 3

ANSC 431	Advanced Reproductive Biology	3
ANSC 446	Population Genetics	3
NRES 201	Introductory Soils	4
NRES 475	Environmental Microbiology	3

\square

This sample sequence is intended to be used only as a guide for degree completion. All students should work individually with their academic advisors to decide the actual course selection and sequence that works best for them based on their academic preparation and goals. Enrichment programming such as study abroad, minors, internships, and so on may impact the structure of this four-year plan. Course availability is not guaranteed during the semester indicated in the sample sequence. Students must fulfill their Language Other Than English requirement by successfully completing a third level of a language other than English. This sample curriculum plan makes the assumption that the foreign language graduation requirement has been satisfied by completing three years of study of a single foreign language in high school. For more information, see the corresponding section on the Degree General and Education Requirements page (http://catalog.illinois.edu/general-information/degree-general-

First Semester	
ABE 127	Intro to Agricultural \& Biological Engrg
ENG 100	Grainger Engineering Orientation Seminar
MATH 221	Calculus I
CHEM 102	General Chemistry I
CHEM 103	General Chemistry Lab I
Composition with Cultura	or General Education course (Humanities or SBS udies)
First Semester	
ABE 227	Computer-Based Problem-Solving in ABE I
CS 101	Intro Computing: Engrg \& Sci
MATH 241	Calculus III
SE 101	Engineering Graphics \& Design
TAM 211	Statics

First Year

	ABE 128	Applied Biology for ABEs	3
2	PHYS 211	University Physics: Mechanics	4
1	PHTH	3	
4	MATH 231	Calculus II	3
3	CHEM 104	General Chemistry II	1
1	CHEM 105	General Chemistry Lab II	3
4	Composition I or General Education course		
		17	

Second Year
Second Semester

3	ABE 228	Computer-Based Problem-Solving in ABE II
3	PHYS 212	University Physics: Elec \& Mag
4	MATH 285	Intro Differential Equations
3	MATH 257	Linear Algebra with Computational Applications
3	TAM 212	Introductory Dynamics
16		

Third Year

Fourth Year

First Semester

	First Semester	2
ABE 430	Project Management	3
See list	Concentration course	3
See list	Concentration course	3
General education course (choose a Humanities or		
Social/Behavioral Science course with Cultural Studies		
Free Elective		15

Second Semester

Second Semester		
ABE 469	Industry-Linked Design Project	4
See list	Concentration course	3
See list	Concentration course	3
General education course (choose a Humanities or	3	
Social/Behavioral Science course with Cultural Studies designation)		
Free elective	3	
	16	

Gen Ed 16 including Comp I requirement

This sample sequence is intended to be used only as a guide for degree completion. All students should work individually with their academic advisors to decide the actual course selection and sequence that works best for them based on their academic preparation and goals. Enrichment programming such as study abroad, minors, internships, and so on may impact the structure of this four-year plan. Course availability is not guaranteed during the semester indicated in the sample sequence. Students must fulfill their Language Other Than English requirement by successfully completing a third level of a language other than English. This sample curriculum plan makes the assumption that the foreign language graduation requirement has been satisfied by completing three years of study of a single foreign language in high school. For more information, see the corresponding section on the Degree General and Education Requirements page (http://catalog.illinois.edu/general-information/degree-general-education-requirements/).

	First Semester	Fir
ABE 127	Intro to Agricultural \& Biological Engrg	2
ENG 100	Grainger Engineering Orientation Seminar	1
MATH 221	Calculus I	4
CHEM 102	General Chemistry I	3
CHEM 103	General Chemistry Lab I	1
Composition I or General Education course (Humanities or SBS with	4	
Cultural Studies)	15	

First Year
Second Semester

Gen Ed	16
Orientation	3
foundation	33
core	36
concen	30
subtotal	118
free	10
total	128

	First Semester
ABE 227	Computer-Based Problem-Solving in ABE I
CS 101	Intro Computing: Engrg \& Sci
MATH 241	Calculus III
SE 101	Engienering Graphics \& Design
TAM 211	Statics

This sample sequence is intended to be used only as a guide for degree completion. All students should work individually with their academic advisors to decide the actual course selection and sequence that works best for them based on their academic preparation and goals. Enrichment programming such as study abroad, minors, internships, and so on may impact the structure of this four-year plan. Course availability is not guaranteed during the semester indicated in the sample sequence. Students must fulfill their Language Other Than English requirement by successfully completing a third level of a language other than English. This sample curriculum plan makes the assumption that the foreign language graduation requirement has been satisfied by completing three years of study of a single foreign language in high school. For more information, see the corresponding section on the Degree General and Education Requirements page (http://catalog.illinois.edu/general-information/degree-general a

	\quad First Semester
ABE 127	Intro to Agricultural \& Biological Engrg
ENG 100	Grainger Engineering Orientation Seminar
MATH 221	Calculus I
CHEM 102	General Chemistry I
CHEM 103	General Chemistry Lab I
Composition I or General Education course (Humanities or SBS	
with Cultural Studies)	

First Year		Second Semester	
2	ABE 128	Biology for ABEs	3
1	PHYS 211	University Physics: Mechanics	4
4	MATH 231	Calculus II	3
3	CHEM 104	General Chemistry II	3
1	CHEM 105	General Chemistry Lab II	1
4	Composition I or General Education course	3	

Gen Ed	16 including Comp I requirement
Orientation	3
foundation	33
core	36
concen	30
subtotal	118

Second Year

First Semester

Second Semester		
ABE 228	Computer-Based Problem-Solving in ABE II	3
PHYS 212	University Physics: Elec \& Mag	4
MATH 285	Intro Differential Equations	3
MATH 257	Linear Algebra with Computational Applications	3
TAM 212	Introductory Dynamics	3
	16	

Third Year
First Semester

First Semester	
ABE 340	Thermodynamics for ABE
ECE 205	Electrical and Electronic Circuits
TAM 335	Inroductory Fluid Mechanics
NRES 201 or CPSC 112	
Free elective	

Second Semester	
IE 300 or	Analysis of Data or Statistics and Probability I
STAT 400	
ABE 425	Engineering Measurement Systems
ABE 341	Transport Processes in ABE
ABE 361	Func Analysis and Design of Agricultural Machine Sy:
Social/Behavioral Science course from: ECON 102, ACE 100, ACE	
210, ACE 2	, or ACE 255

Fourth Year

ABE 430	Project Management	2
ABE 466	Engineering Off-Road Vehicles	3
TAM 251	Introductory Solid Mechanics	3
General education course (choose a Humanities or	3	
Social/Behavioral Science course with Cultural Studies designation)		
Free elective	4	

| Second Semester | |
| :--- | ---: | ---: |
| ABE 469 Industry-Linked Design Project | 4 |
| NRES 488 or CPSC 418 | 3 |
| ABE 454 or ABE 426 or MSE 280 | 3 |
| General education course (choose a Humanities or | 3 |
| Social/Behavioral Science course with Cultural Studies | |
| Free elective | 3 |
| | 16 |

This sample sequence is intended to be used only as a guide for degree completion. All students should work individually with their academic advisors to decide the actual course selection and sequence that works best for them based on their academic preparation and goals. Enrichment programming such as study abroad, minors, internships, and so on may impact the structure of this four-year plan. Course availability is not guaranteed during the semester indicated in the sample sequence. Students must fulfill their Language Other Than English requirement by successfully completing a third level of a language other than English. This sample curriculum plan makes the assumption that the foreign language graduation requirement has been satisfied by completing three years of study of a single foreign language in high school. For more information, see the corresponding section on the Degree General and Education Requirements page (http://catalog.illinois.edu/general-information/degree-general-education-requirements/).

	First Semester
ABE 127	Intro to Agricultural \& Biological Engrg
ENG 100	Grainger Engineering Orientation Seminar
MATH 221	Calculus I
CHEM 102	General Chemistry I
CHEM 103	General Chemistry Lab I
Composition I or General Education course (Humanities or SBS with	
Cultural Studies)	

First Semester

	First Semester
ABE 227	Computer-Based Problem-Solving in ABE I
CS 101	Intro Computing: Engrg \& Sci
MATH 241	Calculus III
SE 101	Engineering Graphics \& Design
TAM 211	Statics

Second Year Second Semester

Second Semester	
ABE 228	Computer-Based Problem-Solving in ABE II
PHYS 212	University Physics: Elec \& Mag
MATH 285	Intro Differential Equations
MATH 257	Linear Algebra with Computational Applications
TAM 212	Introductory Dynamics

PHYS 212 University Physics: Elec \& Mag

MATH 285 Intro Differential Equations
MATH 257 Linear Algebra with Computational Applications TAM 212 Introductory Dynamics

First Semester

ABE 340	Thermodynamics for ABE
ECE 205	Electrical and Electronic Circuits
ABE 436	Renewable Energy Systems
Choose ATMS 201 or CPSC 112 or GEOL 107	

```
Free elective
```

First Semester

ABE 430 Project Management
 ABE 488 Bioprocessing Biomass for Biofuels

Choose concentration courses from listed set of courses (Wind, Solar or Bio General education course (choose a Humanities or Social/Behavioral Science course with Cultural Studies designation)
Free elective
totals by semester 128
Gen Ed 16 including Comp I requirement Orientation 3 $\begin{array}{lr}\text { Orientation } & 3 \\ \text { foundation } & 33\end{array}$ foundation 33 core 36 concen 30 subtotal 118

Second Semester
hird Year

IE 300 or STAT 400	Analysis of Data or Statistics and Probability I
ABE 425	Engineering Measurement Systems
ABE 341	Transport Processes in ABE
Choose ATMS 307 or CPSC 415 or GEOL 380	
Social/Beh 251, or AC	vioral Science course from: ECON 102, ACE 100, ACE 210, ACE 255

4 Industry-Linked Design Project

Industry-Linked Design Project Choose concentration (Wind, Solar or Biot
hoose concentration courses from listed set of courses (Wind, Solar or Biof
hoose concentration courses from listed set of courses (Wind, Solar or Biof
General education course (choose a Humanities or Social/Behaviora
Science course with Cultural Studies designation)
Free elective

This sample sequence is intended to be used only as a guide for degree completion. All students should work individually with their academic advisors to decide the actual course selection and sequence that works best for them based on their academic preparation and goals. Enrichment programming such as study abroad, minors, internships, and so on may impact the structure of this four-year plan. Course availability is not guaranteed during the semester indicated in the sample sequence. Students must fulfill their Language Other Than English requirement by successfully completing a third level of a language other than English. This sample curriculum plan makes the assumption that the foreign language graduation requirement has been satisfied by completing three years of study of a single foreign language in high school. For more information, see the corresponding section on the Degree General and Education Requirements page (http://catalog.illinois.edu/general-information/degree-general-education-requirements/).

First Semester		First Year			
			Second Semester		
ABE 127	Intro to Agricultural \& Biological Engrg	2	ABE 128	Biology for ABEs	3
ENG 100	Grainger Engineering Orientation Seminar	1	PHYS 211	University Physics: Mechanics	4
MATH 221	Calculus I	4	MATH 231	Calculus II	3
CHEM 102	General Chemistry I	3	CHEM 104	General Chemistry II	3
CHEM 103	General Chemistry Lab I	1	CHEM 105	General Chemistry Lab II	1
Composition I or General Education course (Humanities or SBS with Cultural Studies)		4	Composition	I or General Education course	3
		15			17

Second Year

First Semester

	First Semester
ABE 227	Computer-Based Problem-Solving in ABE I
CS 101	Intro Computing: Engrg \& Sci
MATH 241	Calculus III
SE 101	Engienering Graphics \& Design
TAM 211	Statics

Second Semester	
ABE 228	Computer-Based Problem-Solving in ABE II
PHYS 212	University Physics: Elec \& Mag
MATH 285	Intro Differential Equations
MATH 257	Linear Algebra with Computational Applications
TAM 212	Introductory Dynamics

Gen Ed	16 including Comp I requirement
Orientation	3
foundation	33
core	36
concen	30
subtotal	118
free	10
total	128

[^0]This sample sequence is intended to be used only as a guide for degree completion. All students should work individually with their academic advisors to decide the actual course selection and sequence that works best for them based on their academic preparation and goals. Enrichment programming such as study abroad, minors, internships, and so on may impact the structure of this four-year plan. Course availability is not guaranteed during the semester indicated in the sample sequence. Students must fulfill their Language Other Than English requirement by successfully completing a third level of a language other than English. This sample curriculum plan makes the assumption that the foreign language graduation requirement has been satisfied by completing three years of study of a single foreign language in high school. For more information, see the corresponding section on the Degree General and Education Requirements page (http://catalog.illinois.edu/general-information/degree-general-education-requirements/).

First Semester	
ABE 127	Intro to Agricultural \& Biological Engrg
ENG 100	Grainger Engineering Orientation Seminar
MATH 221	Calculus I
CHEM 102	General Chemistry I
CHEM 103	General Chemistry Lab I
Composition Studies)	or General Education course (Humanities or SBS with Cultural

First Semester

ABE 227	Computer-Based Problem-Solving in ABE I
CS 101	Intro Computing: Engrg \& Sci
MATH 241	Calculus III
SE 101	Engienering Graphics \& Design
TAM 211	Statics

First Year

	Second Semester
ABE 128	Biology for ABEs
PHYS 211	University Physics: Mechanics
MATH 231	Calculus II
CHEM 104	General Chemistry II
CHEM 105	General Chemistry Lab II
Composition I or General Education course	

Second Year

```
        rientation 3
        foundation 33
            core 36
            concen 30
            subtotal }11
```


17
totals by semester 128 (check)

This sample sequence is intended to be used only as a guide for degree completion. All students should work individually with their academic advisors to decide the actual course selection and sequence that works best for them based on their academic preparation and goals. Enrichment programming such as study abroad, minors, internships, and so on may impact the structure of this four-year plan. Course availability is not guaranteed during the semester indicated in the sample sequence. Students must fulfill their Language Other Than English requirement by successfully completing a third level of a language other than English. This sample curriculum plan makes the assumption that the foreign language graduation requirement has been satisfied by completing three years of study of a single foreign language in high school. For more information, see the corresponding section on the Degree General and Education Requirements page (http://catalog.illinois.edu/general-information/degree-general-education-requirements/).

	First Semester	Firs
	Intro to Agricultural \& Biological Engrg	2
ABE 127	Grainger Engineering Orientation Seminar	1
ENG 100	Calculus I	4
MATH 221	3	
CHEM 102	General Chemistry I	1
CHEM 103	General Chemistry Lab I	4
Composition I or General Education course (Humanities or SBS with	4	
Cultural Studies)		
		15

First Yea

ABE 128 Biology for ABEs
Second Semester
PHYS 211 University Physics: Mechanics
MATH 231 Calculus II
CHEM 104 General Chemistry II
CHEM 105 General Chemistry Lab II
Composition I or General Education course

Second Semeste

	First Semester
ABE 227	Computer-Based Problem-Solving in ABE I
CS 101	Intro Computing: Engrg \& Sci
MATH 241	Calculus III
SE 101	Engienering Graphics \& Design
TAM 211	Statics

econd Year

Second Semester	
ABE 228	Computer-Based Problem-Solving in ABE II
PHYS 212	University Physics: Elec \& Mag
MATH 285	Intro Differential Equations
MATH 257	Linear Algebra with Computational Applications
TAM 212	Introductory Dynamics

Third Year

First Semester

First Semester	
ABE 340	Thermodynamics for ABE
ECE 205	Electrical and Electronic Circuits
Choose one concentration course from 'Select 9 hours' list	
MCB 150	Molecular \& Cellular Basis of Life
Free Elective	

Second Semeste

IE 300 or	Analysis of Data or Statistics and Probability I	3
STAT 400		
ABE 425	Engineering Measurement Systems	4

ABE 425	Engineering Measurement Systems	4
ABE 341	Transport Processes in ABE	3

Social/Behavioral Science course from: ECON 102, ACE 100, ACE 210 , ACE 251, or ACE 255

Gen Ed 16 including Comp I requirement Orientation 3 foundation 33
core 36
concen 30
subtotal 118
free 10
total 128

Fourth Year				
First Semester		Second Semester		
ABE 430 Project Management	2	ABE 469	Industry-Linked Design Project	4
Choose one concentration course from 'select one' list	3	ABE 446	Biological Nanoengineering	3
Choose one concentration course from 'Select 9 hours' list	3	Choose o	concentration course from 'Select 9 hours' list	3
General education course (choose a Humanities or Social/Behavioral Science course with Cultural Studies designation)	3	General Social/Be	cation course (choose a Humanities or vioral Science course with Cultural Studies	3
Free Elective	4	Free elec		3
	15			16

[^0]: totals by semester 128 (check)

